Model Poison Attack in Federated Learning for IoT

IoT Systems

The Internet of Things (IoT) refers to the network of physical devices, vehicles, home appliances, and other items embedded with electronics, software, sensors, actuators, and connectivity.

Application Scenarios

- **Smart Cities:** Federated learning can be used in traffic management systems, optimizing traffic flow based on data from various sensors and cameras while keeping this data localized.
- Healthcare Monitoring: Wearable devices can collect health data and contribute to predictive health models without sharing sensitive personal health information.
- **Industrial IoT:** In factories, machines equipped with sensors can use federated learning to predict maintenance needs or optimize production processes, enhancing efficiency and safety.
- Home Automation: Smart home devices like thermostats and security cameras can learn user preferences and detect anomalies without sending sensitive data to the cloud.

Federated Learning in IoT Systems

- Federated learning addresses the critical challenge of data privacy in IoT.
- It allows for real-time analytics and decision-making at the edge of the network.
- Facilitates scalable machine learning models without the need for massive data centralization.

Federated Learning is the problem of training a shared global model under the coordination of a central server, from a federation of participation devices which maintain control of their own data.

- Federated learning is a decentralized approach to training machine learning models.
- It doesn't require an exchange of data from client devices to global servers.
- The raw data on edge devices is used to train the model locally, increasing data privacy.
- The final model is formed in a shared manner by aggregating the local updates.

Federated Learning Applications

The Federated learning is first put forward by Google to predict user's next-word prediction from Gboard on Android devices.

- Smart Phone
- Organization
- IoT
- Healthcare
- Advertising
- Autonomous vehicles
- Federated learning in the field of financial fraud
- Federated learning in the field of insurance

Horizontal FL & Vertical FL

Horizontal FL

each participant share similar features but concern different samples

• Vertical FL

participants have overlaps in the sample space but differ in the feature space

- The server chooses an initialized model and broadcasts the current global model to (a subset of) the clients
- Each client fine-tunes the global model using its local training data and reports its model update to the server
- The server aggregates the clients' model updates following some aggregation rule and uses the aggregated model update to update the global model.

local model updates:

$$oldsymbol{g}_t^i = rac{\partial \mathcal{L}_i(oldsymbol{w}_t)}{\partial oldsymbol{w}_t}$$

global model updates:

$$\boldsymbol{g}^t = \mathcal{A}(\boldsymbol{g}_1^t, \boldsymbol{g}_2^t, \cdots, \boldsymbol{g}_n^t)$$

global model:

$$\boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^t + \eta \boldsymbol{g}^t$$

	······································
\mathbf{w}^{t}	global model in the <i>t</i> -th round
\mathcal{L}	loss function
$oldsymbol{g}_t^i$	model update of <i>i</i> -th client
\mathcal{A}	aggregation rule
$oldsymbol{g}^t$	global model updates
η	learning rate

Aggregation Rules

• FedAvg

Average value of the local model updates as the parameter of global model update.

• Median

Median value of the local model updates as the parameter of global model update.

• Trimmed-mean

Removes the largest and smallest k values from its sorted values, and then computes the average of the remaining values as the parameter of global model update.

Model Poisoning Attack to FL

• Targeted Model Poisoning Attacks:

Aim to force the global model to output attacker chosen target labels for attacker-chosen target input.

• Untargeted Model Poisoning Attacks: Aim to decrease the test accuracy of the global model.

- Compromised genuine clients compute the genuine local model updates based on their genuine local training data.
- They perturb their genuine local model updates such that the poisoned global model updates will substantially deviate from the genuine ones.

Threat Model

• Attacker's goal

Decrease the test accuracy of global model.

• Attacker's capability

Inject fake clients and control fake clients to send fake local model updates.

• Attacker's knowledge

Received global model during training.

Model Poisoning Attack

- $oldsymbol{w}'$ attacker-chosen base model.
- w^* learnt global model without attack.

Model Poisoning Attack

Evaluation

A lower test accuracy indicates a stronger attack

Evaluation

Performance under Norm Clipping

$$\boldsymbol{g} \rightarrow \frac{\boldsymbol{g}}{\max(1,\|\boldsymbol{g}\|_2/M)}$$

 $M \longrightarrow 0$ Test accuracy under attack/no attack decrease $M \longrightarrow \infty$ No norm clipping

Conclusion

- Addressing Privacy and Security Concerns: Federated Learning stands at the forefront of addressing the critical privacy and security concerns in IoT by keeping data localized and minimizing the risk of data breaches.
- Enabling Real-Time, Efficient IoT Applications: By facilitating on-device data processing, Federated Learning enables IoT systems to make real-time decisions, greatly reducing latency and enhancing the efficiency of IoT applications.
- Meeting the Challenges of Scalability and Diversity: Given the diverse and expansive nature of IoT devices, Federated Learning's scalable and adaptable framework is essential for managing the complexity and variety inherent in IoT ecosystems.